

AO-Grasp: Articulated Object Grasp Generation

Carlota Parés Morlans^{*1}, Claire Chen^{*1}, Yijia Weng¹, Michelle Yi¹, Yuying Huang¹, Nick Heppert², Lingi Zhou¹, Leonidas Guibas¹, and Jeannette Bohg¹ Stanford University, CA, USA¹, University of Freiburg, Germany²

Problem

Grasping articulated objects presents **two unique challenges** compared to grasping

Experimental Results

Simulation Evaluation

AO-Grasp compared to baselines

Compared to baselines Contact-GraspNet (CGN)^[1] and Where2Act (W2A)^[2],

AO-Grasp achieves higher grasp success rates

	All					-	Train Ca	ategories	gories						Test Categories					
	All states	Closed state					Open states						Closed state			C	Open states			
	All	All					Ú	All		 			Ú	AI	₿ []		All	₿ Ū		
Model	n = 3740	800	80	240	80	80	320	980	210	210	140	140	280	56	8	8	64	8	8	
AO-Grasp (Ours)	44.8	42.6	61.3	47.1	62.5	11.3	37.5	53.9	59.5	53.8	79.3	42.9	42.5	33.	9 35.8	33.3	50.0	27.8	55.7	
CGN [2]	31.5	21.5	31.2	4.17	37.5	0	33.4	45.9	49.5	57.6	65.0	47.1	24.3	18.	1 5	21.8	40.8	22.2	45.6	
W2A [1]	2.46	0.38	0	1.25	0	0	0	2.65	1.43	1.90	4.29	4.29	2.50	0.2	8 0	0.36	6.81	2.78	7.86	

Table 2: Simulation grasp success rates (%) for the top-10 grasps generated by AO-Grasp, CGN, and W2A baselines. Results are broken down by train/test categories, joint state, and category (denoted by icons).

non-articulated objects:

Grasps must be **stable** and **actionable**

2. Different **joint configurations** have different

We consider the first crucial but challenging step determining how a robot can grasp articulated objects to enable downstream tasks.

AO-Grasp Dataset

48K stable and actionable grasps on synthetic articulated objects from PartNet-Mobility.^[3,4] 5 object categories (box, dishwasher, microwave, safe, trashcan).

Category	All					Ú
# Instances	61	9	17	11	11	13
Closed State Open State	6323 41954	516 8091	1396 8020	1546 8022	372 6152	2493 11669
Total	48277	8607	9416	9568	6524	14162

AO-Grasp's predicts more accurate actionability heatmaps

Figure 3: A comparison of grasp-likelihood heatmaps between AO-Grasp and baselines CGN and W2A, where green denotes higher scores and top-1 proposals are highlighted with blue dots. Note that no segmentation mask are required. Both baselines propose non-actionable points more often than AO-Grasp.

AO-Grasp is more robust to varying camera viewpoints

Figure 4: A breakdown of AO-Grasp's and CGN's success rates by camera distance and angle to object.

AO-Grasp ablations

Figure 1: Sample object instances in the AO-Grasp Dataset and their sampled positive grasps.

AO-Grasp Predictor

For each point in a partial point cloud, we predict a grasp-likelihood score that signifies **how** likely that point will afford a stable and actionable grasp.

We use **two training strategies to improve generalization** to new views and objects, namely (a) Siamese PointNet++ and (b) Pseudo Ground Truth Heatmaps.

We combine a hardest contrastive loss and the mean squared error between per-point predicted scores and pseudo ground truth heatmap labels to learn generalizable feature encodings. We set $\lambda_{HC} = 3$ and $\lambda_{MSE} = 1$.

(1)
$$\mathcal{L}_{\text{total}} = \lambda_{HC} \mathcal{L}_{HC} + \lambda_{MSE} \mathcal{L}_{MSE}$$

HC: Hardest contrastive MSE: Mean squared error

Given a good grasp point, an object's **local geometry** is the **most important** factor in determining a suitable grasp orientation. As such, we leverage predictions from $CGN^{[2]}$.

Both pre-training PointNet++ on viewpoint-independent point correspondences and supervising on dense pseudo-ground truth heatmaps improve overall performance, especially on unseen test categories.

		All categories	Train ca	tegories	Test categories			
		All states	Closed	Open	Closed	Open		
PT PN++	Dense heatmap	n = 3740	800	980	1080	880		
1	✓	44.8	42.6	53.9	33.9	50.0		
X	1	42.0	38.6	54.4	26.5	49.9		
×	×	37.9	41.6	61.8	11.1	40.8		

Table 3: Simulation grasp success rates (%) for AO-Grasp ablations on pre-training (PT) PointNet++ (PN++) and training on our dense pseudo ground truth heatmaps

Real-world Evaluation

Zero-shot sim-to-real transfer

We conduct a quantitative evaluation of AO-Grasp and CGN on 120 scenes of real-world objects with varied local geometries and articulation axes, in different joints states, and captured from different viewpoints.

AO-Grasp outperforms baseline Contact-GraspNet on **real-world** articulated objects.

	All states				Closed state						Open states								
	All	All									All					U			
Model	n = 120	56	8	8	8	8	8	8	8		64	8	8	8	8	8	8	8	8
AO-Grasp (Ours)	67.5	57.1	87.5	62.5	75.0	37.5	37.5	62.5	37.5		76.6	100	100	37.5	87.5	62.5	87.5	50.0	87.5
CGN	33.3	10.7	0	12.5	0	0	0	25.0	37.5		53.1	62.5	50.0	37.5	87.5	62.5	62.5	0	62.5
	I		_									11				~		5]	

Table 4: Real-world success rates (%) for AO-Grasp and the baseline Contact-GraspNet^[2]

Acknowledgments

This work was supported by Toyota Research Institute.

References

(c) Grasp Proposal Generation

[1] Mo, Kaichun, et al. "Where2act: From pixels to actions for articulated 3d objects." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021.

[2] Sundermeyer, Martin, et al. "Contact-graspnet: Efficient 6-dof grasp generation in cluttered scenes." 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2021

[3] Mo, Kaichun, et al. "Partnet: A large-scale benchmark for fine-grained and hierarchical part-level 3d object understanding." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019...

[4] Xiang, Fanbo, et al. "Sapien: A simulated part-based interactive environment." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.